# ASSESSMENT OF THE RANDHAWA AND PUJAHARI PREOPERATIVE SCORING SYSTEM FOR LAPAROSCOPIC CHOLECYSTECTOMY DIFFICULTLY

Ali M. Aloun MD\*, Bashar G. Alanakrih MD\*, Belal A. Abunaja MD\*, Husam I. Alkhawaldeh MD\*, Saed F. Alshoufeen MD\*, Tawfiq Alnawafleh MD\*

\* Department of Surgery

### ABSTRACT

**Goal**: To compare the preoperative predictors of difficult laparoscopic cholecystectomy with intraoperative predictors.

**Methods**: Our prospective investigation enrolled 133 patients of both sexes, aged 41–67 years, with cholelithiasis and assigned for elective laparoscopic cholecystectomy at King Talal Military Hospital, Mafraq, and Prince Rashid hospital, Jordan, during the years 2018–2019. The preoperative scoring system of Randhawa and Pujahari included: I) gender, age, and previous admission; II) obesity, abdominal scar, and palpable gallbladder; and III) gallbladder wall thickness, pericholecystic collection, and impacted stone. The laparoscopic cholecystectomy difficult (11–15). The intraoperative difficulty scoring considered the surgery time, bile/stone spillage, an insult to a duct, and conversion to open cholecystectomy. Univariate and multivariate logistic regression analyses were performed to anticipate difficulty. A p-value of less than 0.05 was considered statistically significant.

**Results**: Previous admission (P < 0.003(OR=9.56) and 0.04(OR=3.12)) and wall thickness (P < 0.004(OR=8.21) and 0.03(OR=2.55)) anticipated difficult laparoscopic cholecystectomy in univariate and multivariate analyses, respectively. Age (P < 0.0041(OR=8.34)), BMI greater than 30 (P < 0.02(OR=2.44)), palpable gallbladder (P < 0.0033(OR=9.40)), and impacted stone (P < 0.035(OR=2.78)) anticipated difficult laparoscopic cholecystectomy. Gender, abdominal scar, and pericholecystic collection did not anticipate difficult laparoscopic cholecystectomy.

**Conclusion:** The preoperative scoring system can help anticipate the surgical outcome in laparoscopic cholecystectomy. A previous admission for acute cholecystitis and the wall thickness of the gallbladder were the best predictors of difficult laparoscopic cholecystectomy.

Keywords: scoring system, preoperative, intraoperative, laparoscopic cholecystectomy.

JRMS APRIL 2025; 32 (1): 10.12816/0062159.

### INTRODUCTION

Cholelithiasis is the most frequent biliary disease. Gallstones are found in 10-15% of people and are asymptomatic in more than 80% <sup>(1)</sup>. One to two percent of asymptomatic patients will experience clinical features needing cholecystectomy as the most surgery (2) frequent Laparoscopic cholecystectomy is the technique of choice for symptomatic gallstone disease (3). complicated Surgery is by acute inflammation or gangrenous gallbladder, dense adhesions at Calot's triangle, fibrotic gallbladder, and contracted and cholecystoenteric fistula<sup>(4)</sup>. Risk factors for difficult laparoscopic surgery include male gender, old age, obesity, attacks of acute cholecystitis, previous abdominal surgery, and ultrasonographic findings, such as gallbladder wall, thickened distended gallbladder, pericholecystic fluid collection, and impacted stone  $^{(5)}$ .

The risk factors for conversion are: more than 65 years old, male gender, previous upper abdominal surgery, and history of acute cholecystitis <sup>(6)</sup>. Ultrasonography is the most frequent investigation for cholecystitis

## Methods

This prospective investigation enrolled 133 patients of both genders, aged 41-67 years, cholelithiasis and scheduled for with elective laparoscopic cholecystectomy at King Talal military hospital, Mafraq, and Prince Rashid hospital, Jordan, during the years 2018–2019. Written informed consent was obtained from all patients and approval from our local ethical and research board review committee of the Royal medical services. Patients with acute cholecystitis, empyema of GB, CBD stones, and cholangitis were ruled out.

The preoperative anticipative factors of difficult laparoscopic cholecystectomy (scoring system of Randhawa and Pujahari<sup>(7)</sup> ) are: (I) age, gender, and previous admission for acute cholecystitis; (II) BMI, abdominal scar, and palpable gallbladder; and (III) ultrasound findings, such as wall thickness of gallbladder, pericholecystic collection, and impacted stone (Table 1). Intraoperative findings were evaluated for grading of difficult laparoscopic cholecystectomy (scoring system of Randhawa and Pujahari) <sup>(7)</sup> (Table 1). The preoperative scores were compared with intraoperative scores as predictors. The laparoscopic cholecystectomy difficulty was graded in terms of the preoperative score as: easy (0-5), difficult (6-10), and very difficult (11-15), with a maximum score of 15. The intraoperative scoring system (easy, difficult, very difficult surgery) considers surgery time, bile/stone spillage, insult to a duct. and conversion to open cholecystectomy.

and cholelithiasis and can help to predict intraoperative difficulty.

Here we assess how well a preoperative scoring system for difficult laparoscopic cholecystectomy predicts intraoperative difficulty.

## **Statistics**

Univariate and multivariate logistic regression analyses were performed to anticipate difficulty. Multivariate analysis of logistic regression was used to find the predictive factors for predicting preoperative outcome namely easy and difficult in which three categories of difficulty were clustered in. A p-value of less than 0.05 was considered statistically significant.

## RESULTS

Most patients were females [n = 110](82.7%)] with a female to male ratio of 4.8:1, and the median age was 51 years (range: 41-67 years) (Table 2). In terms of ultrasound findings, 100 patients (75.2%) had multiple calculi, while 33 patients (24.8%) had solitary stone; 40 patients (30.1%) had impacted stone, 28 patients (21.1%) had wall thickening more than or equal to 4 mm, and a pericholecystic collection was recorded in 25 patients (18.8%) (Table 2). The association between the anticipation of difficulty before surgery and the outcome is demonstrated in Table 3.On preoperative assessment, 39 (29.3%) patients were classified as difficult/very difficult, of whom 35 (89.7%) patients had a difficult/very difficult surgery, and four (10.3%) an easy surgery. Most (94, 70.7%) patients were classified as easy on preoperative assessment, of whom 84 (89.4%) patients had an easy surgery, and ten (10.6%) had a difficult/very difficult surgery (Table 3). Eleven (28.2%) patients were converted to open cholecystectomy from 39 patients anticipated difficult/very

difficult on preoperative assessment. Eight (8.5%) patients were converted to open from 94 patients anticipated easy on preoperative assessment. There were 19 (14.3%) conversions, of which 12 were males, and seven patients were females. The cause of conversion was: dense adhesions at Calot's triangle (13 patients), Mirrizi's syndrome (three patients), and uncontrolled bleeding (three patients).

In the univariate and multivariate analyses of the outcome before surgery with risk factors, the previous admission for acute cholecystitis and wall thickness were statistically significant predictors for difficult laparoscopic cholecystectomy. In the univariate analysis, age, BMI more than 30, palpable gallbladder, and impacted stone

were predictors of difficult laparoscopic cholecystectomy (Table 4). In terms of univariate and multivariate analyses of outcome during surgery with risk factors, previous admission and wall thickness were predictors of difficult laparoscopic cholecystectomy. In the univariate analysis, age, gender, palpable gallbladder, and impacted stone were statistically significant predictors for difficult laparoscopic cholecystectomy (Table 5). There was an association (P < 0.0045(OR=11.12)) between the preoperative score and the intraoperative score of laparoscopic cholecystectomy patients; patients with an easy preoperative score mainly have an easy intraoperative score.

|                      | Score | Maximum score | Difficulty grading     |
|----------------------|-------|---------------|------------------------|
| Preoperative         |       |               |                        |
| Age (years)          |       | 1             | Total maximum score:   |
| <50                  | 0     |               | 0–5 (easy)             |
| >50                  | 1     |               | 6–10 (difficult)       |
| Gender               |       | 1             | 11–15 (very difficult) |
| F                    | 0     |               |                        |
| М                    | 1     |               |                        |
| Admission            |       | 4             |                        |
| No                   | 0     |               |                        |
| Yes                  | 4     |               |                        |
| BMI                  |       | 2             |                        |
| <25                  | 0     |               |                        |
| 25–27.5              | 1     |               |                        |
| >27.5                | 2     |               | _                      |
| Abdominal scar       |       | 2             |                        |
| None                 | 0     |               |                        |
| Infraumbilical       | 1     |               |                        |
| Supraumbilical       | 2     |               | _                      |
| Palpable gallbladder |       | 1             |                        |
| No                   | 0     |               |                        |
| Yes                  | 1     |               | _                      |
| Wall thickness       |       | 2             |                        |
| Thin <4 mm           | 0     |               |                        |
| Thick >4 mm          | 2     |               |                        |

Table 1. predictors scoring system (Randhawa and Pujahari), before and during surgery, for laparoscopic cholecystectomy.

JOURNAL OF THE ROYAL MEDICAL SERVICES Vol.32 No.1 APRIL 2025

| Pericholecystic collection    |   | 1     |                |
|-------------------------------|---|-------|----------------|
| No                            | 0 |       |                |
| Yes                           | 1 |       |                |
| Impacted stone                |   | 1     |                |
| No                            | 0 |       |                |
| Yes                           | 1 |       |                |
| Intraoperative                |   |       |                |
| Surgery time <1 h; no bile    |   | 0–5   | Easy           |
| spillage; no insult to artery |   |       |                |
| or duct                       |   |       |                |
| Surgery time 1–2 h; and/or    |   | 6–10  | Difficult      |
| bile or stone spillage;       |   |       |                |
| and/or insult to duct         |   |       |                |
| Surgery time $> 2$ h or       |   | 11–15 | Very difficult |
| conversion                    |   |       |                |

# Table 2. Patient demographics.

| •••                        | No (%)     |
|----------------------------|------------|
| Age (years)                |            |
| <50                        | 105(78.9%) |
| >50                        | 28(21.1%)  |
| Gender                     |            |
| F                          | 110(82.7%) |
| М                          | 23(17.3)   |
| Admission                  | 35(26.3%)  |
|                            |            |
| BMI                        |            |
| <25                        | 90(67.7%)  |
| 25-29.5                    | 12(9.0%)   |
| >30                        | 31(23.3)   |
| Abdominal scar             |            |
| None                       | 85(63.9%)  |
| Infraumbilical             | 35(26.3%)  |
| Supraumbilical             | 13(9.8%)   |
| Palpable gallbladder       | 32(24.1%)  |
|                            |            |
| Wall thickness             |            |
| Thin <4 mm                 | 108(81.2%) |
| Thick >4 mm                | 25(18.8%)  |
| Pericholecystic collection | 28(21.1%)  |
|                            |            |
| Impacted stone             | 38(28.6%)  |
|                            |            |
| Conversion                 | 13(9.8%)   |
|                            |            |
| Number of stones           |            |
| Solitary                   | 30(22.6%)  |
| Multiple                   | 103(77.4%) |

JOURNAL OF THE ROYAL MEDICAL SERVICES Vol.32 No.1 APRIL 2025

| Preoperative score |                | easy | difficult | Very<br>difficult | total |
|--------------------|----------------|------|-----------|-------------------|-------|
| 0–5                |                | 84   | 7         | 3                 | 94    |
|                    | Intraoperative | 84   | 10        |                   | 94    |
| 6–10               |                | 4    | 26        | 9                 | 39    |
|                    | Intraoperative | 4    | 35        |                   | 39    |
| Total preoperative |                | 88   | 33        | 12                | 133   |
|                    | Total          | 88   | 45        |                   | 133   |
|                    | intraoperative |      |           |                   |       |

Table 3. Association between preoperative assessment and intraoperative surgery.

## Table 4. Study of preoperative anticipation.

|                     | Total Preop. | Total Preop.diff.; | P-value (UNI- MULTI-    |
|---------------------|--------------|--------------------|-------------------------|
|                     | easy; n=94   | n=39               | variate)                |
| Age: <50, >50       | 80(85.1%)    | 20(51.3%)          | P(UNI)< 0.0041(OR=8.34) |
|                     | 14(14.9%)    | 19(48.7%)          |                         |
| Gender: female,     | 82(87.2%)    | 30(76.9%)          |                         |
| male                | 12(12.8%)    | 9(23.1%)           |                         |
| Admission: no, yes  | 75(79.8%)    | 18(46.2%)          | P UNI<0.003(OR=9.56)    |
| -                   | 19(20.2%)    | 21(53.8%)          | P MULTI<0.04(OR=3.12)   |
| BMI: <25, 26–       | 70 (74.5%) 7 | 20(51.3%)          | P UNI <0.02(OR=2.44)    |
| 29.5, >30           | (7.4%)       | 4(10.3%)           |                         |
|                     | 17(18.1%)    | 15(38.5%)          |                         |
| Abdominal scar:     | 62(65.9%)    | 23 (58.9%)         |                         |
| none,               | 25(26.6%)    | 9(23.2%)           |                         |
| infraumbilical,     | 7(7.5%)      | 7(17.9%)           |                         |
| supraumbilical      |              |                    |                         |
| Palpable            | 75(79.8%)    | 19(48.7%)          | P UNI <0.0033(OR=9.40)  |
| gallbladder: no,    | 19(20.2%)    | 20(51.3%)          |                         |
| yes                 |              |                    |                         |
| Wall thickness:     | 80(85.1%)    | 24(61.5%)          | P UNI <0.004(OR=8.21) P |
| thin (<4 mm),       | 14(14.9%)    | 15(38.5%)          | MULTI <0.03(OR=2.55)    |
| thick (>4 mm)       |              |                    |                         |
| Pericholecystic     | 77(81.9%)    | 32(82.1%)          |                         |
| collection: no, yes | 17(18.1%)    | 7(17.9%)           |                         |
| Impacted stone:     | 74(78.7%)    | 22(56.4%)          | P UNI <0.035(OR=2.78)   |
| no, yes             | 20(21.3%)    | 17(43.6%)          |                         |

|                 | Total        | Total              | P-value (UNI- MULTI-    |
|-----------------|--------------|--------------------|-------------------------|
|                 | intraop.easy | intraop.diff.;n=33 | variate)                |
|                 | ;n=88        |                    |                         |
| Age: <50, >50   | 75(85.2%)    | 16 (48.5%)         | P UNI <0.0041(OR=8.34)  |
|                 | 13(14.8%)    | 17(51.5%)          |                         |
| Gender:         | 80(90.9%)    | 25(75.8%)          | P UNI <0.037(OR=3.11)   |
| female, male    | 8(9.1%)      | 8(24.2%)           |                         |
| Admission: no,  | 73(82.9%)    | 17(51.5%)          | P UNI <0.003(OR=9.56) P |
| yes             | 15(17.1%)    | 16(48.5%)          | MULTI <0.04(OR=3.12)    |
| BMI: <25, 26–   | 68(77.3%)    | 20(60.6%)          |                         |
| 29.5, >30       | 6(6.8%)      | 5(15.2%)           |                         |
|                 | 14(15.9%)    | 8(24.2%)           |                         |
| Abdominal       | 58(65.9%)    | 23(69,7%)          |                         |
| scar: none,     | 23(26.2%)    | 3(9.1%) 7(21.2%)   |                         |
| infraumbilical, | 7(7.9%)      |                    |                         |
| supraumbilical  |              |                    |                         |
| Palpable        | 74(84.1%)    | 16(48.5%)          | P UNI <0.0033(OR=9.40)  |
| gallbladder:    | 14(15.9%)    | 17(51.5%)          |                         |
| no, yes         |              |                    |                         |
| Wall thickness: | 77(87.5%)    | 18(54.5%)          | P UNI <0.004(OR=8.21) P |
| thin (<4 mm),   | 11(12.5%)    | 15(45.5%)          | MULTI <0.03(OR=2.55)    |
| thick (>4 mm)   |              |                    |                         |
| Pericholecystic | 73 (82.9%)   | 24(72.7%)          |                         |
| collection: no, | 15(17.1%)    | 9(27.3%)           |                         |
| yes             |              |                    |                         |
| Impacted        | 72 (81.8%)   | 17(51.5%)          | P UNI <0.035(OR=2.78)   |
| stone: no, yes  | 16(18.2%)    | 16(48.5%)          |                         |
|                 |              |                    |                         |

Table 5. Study of intraoperative anticipation.

## DISCUSSION

Laparoscopic cholecystectomy can be complicated by dense adhesions in Calot's triangle, empyema of the gallbladder, Mirrizi's syndrome, and acute cholecystitis <sup>(8)</sup>. Age above 50 years has also been identified as a significant risk factor for difficult laparoscopic cholecystectomy <sup>(9)</sup>. In our investigation, by univariate analysis regarding preoperative and intraoperative findings, there was a remarkable association between age above 50 years and difficult operation. Male gender was correlated with difficult laparoscopic cholecystectomy (10). A high conversion frequency has been recorded in males <sup>(2)</sup>. In our investigation, 12

of 23 (52.2%) male patients were converted to open surgery. By univariate analysis of intraoperative findings, there was a remarkable association between male gender and operative difficulty.

Patients with repeated admissions for acute cholecystitis have more frequency of difficult laparoscopic cholecystectomy and conversion because of dense adhesions at Calot's triangle and GB fossa <sup>(2)</sup>. In our investigation, admission was remarkably recorded as a predictor for difficult laparoscopic cholecystectomy in both univariate and multivariate analyses in preoperative and intraoperative findings. Laparoscopic surgery is difficult in obese patients as port insertion requires greater time, and dissection at the Calot's triangle is difficult <sup>(11)</sup>. In our investigation, BMI more than 30 was a predictor of difficult laparoscopic cholecystectomy, but only by univariate analysis of the preoperative findings. Supra and infraumbilical scars can lead to adhesions, risking insult to any structures and associated with increased conversion <sup>(2)</sup>. In our investigation, the abdominal scar was insignificant in both univariate and multivariate analyses of preoperative and intraoperative findings. A palpable gallbladder is caused by a distended gallbladder, mucocele of the gallbladder, and adhesions. In univariate analysis of preoperative and intraoperative findings, a palpable gallbladder was identified as a significant predictor.

Increased thickness of the gallbladder wall is correlated with difficult dissection at the bed and at Calot's triangle. In our investigation, there was a remarkable correlation between the gallbladder wall thickness and the operative difficulty in univariate and multivariate analyses of preoperative and intraoperative findings.

### Conclusion

The preoperative Randhawa and Pujahari scoring system can anticipate the surgical difficulty outcome in laparoscopic cholecystectomy.A previous admission for

REFERENCES

- Rao KS, Meghavathu GN, Rao GS, Prasad HRT. Clinical study of gallstone disease and treatment options. J Evol Med Dent Sci 2015;4:13841–13848.
- 2. Abd-El-Aal AS, Hassan AA. Evaluation of preoperative predictive factors for difficult laparoscopic cholecystectomy in comparison with intraoperative parameters. The Egyptian Journal of Surgery 2018;37(4):504-11.

The pericholecystic collection was a laparoscopic predictor of difficult (12) cholecystectomy while it was insignificant in other trials (7). In our investigation, there was no correlation between pericholecystic collection and the operative difficulty in univariate and multivariate analyses of preoperative and intraoperative findings. Impacted stone at the neck of the gallbladder can be problematic in laparoscopic cholecystectomy. In our investigation, the impacted stone at the neck of the gallbladder was remarkable in univariate analysis of preoperative and intraoperative findings.

Conversion frequency was recorded in other studies as 7-35% <sup>(2)</sup> or 25% in difficult patients <sup>(13)</sup>. The preoperative scoring system is a good test for anticipating result in laparoscopic the operative cholecystectomy<sup>(2)</sup>. Laparoscopic surgical intervention for cholecystectomy is the technique for symptomatic optimum gallbladder stone disease management as minimal invasiveness operation with minimal pain, early emergence, with less insult of access and no obscuring of the surgical field <sup>(14)</sup>.

acute cholecystitis and the wall thickness of the gallbladder were the best predictors of difficult laparoscopic cholecystectomy.

- Le VH, Smith DE, Johnson BL. Conversion of laparoscopic to open cholecystectomy in the current era of laparoscopic surgery. Am Surg 2012; 78:1392–1395.
- 4. Nikhil A, Sumitoj S, Sudhir K. Preoperative prediction of difficult laparoscopic cholecystectomy: A scoring method. Niger J Surg 2015;21(2):130–3.

- Veerank N, Togale MD. Validation of a scoring system to predict difficult laparoscopic cholecystectomy: A oneyear cross-sectional study. J West Afr Coll Surg. 2018;8(1):23–39.
- Lee NW, Collins J, Britt R, Britt LD. Evaluation of preoperative risk factors for converting laparoscopic to open cholecystectomy. Am Surg 2012;78:831– 833.
- Randhawa JS, Pujahari AK. Preoperative prediction of difficult lap chole: A scoring method. Indian J Surg 2009; 71:198–201. 8. Shreenath P, Padmanabh SI.Evaluation of preoperative predictive factors that determine .difficult laparoscopic cholecystectomy. Int Surg J 2016;3(2):825-30.
- 9. Sahu SK, Agrawal A, Sachan PK. Intraoperative difficulties in laparoscopic cholecystectomy. Jurnalul de Chirurgic 2013;2:149–155.
- O'Leary DP, Myers E, Waldron D, Coffey JC. Beware the contracted gallbladder – ultrasonic predictor of conversion. Surgeon 2013;11:187–190.
- 11. Ashish KK, Meenakshi Y. Preoperative prediction of difficult laparoscopic cholecystectomy using a scoring system. Int Surg J 2017;4(10):3388-91.
- 12. Dhanke PS, Vgane SP. Factors predicting difficult lap laparoscopic cholecystectomy: A single institution experience. Int J Stud Res 2014;4:3–7.
- 13. Szabo K, Rothe A, Shamiych A. Laparoscopic cholecystectomy – review over 20 years with attention on acute cholecystitis and conversion. Eur Surg 2012;44:28–32.
- 14. Basim RG. Assessment of the difficulties in laparoscopic cholecystectomy among patients at Baghdad province. Ann Med Surg 2019;41:16–9.

JOURNAL OF THE ROYAL MEDICAL SERVICES Vol.32 No.1 APRIL 2025